Najczulszy detektor ciemnej materii zarejestrował niezwykłe sygnały. Fizycy nie wiedzą, czym one są
Fizycy pracujący przy najbardziej czułym eksperymencie poszukującym ciemnej materii poinformowali o zarejestrowaniu nietypowych sygnałów. Istnieją trzy możliwe interpretacje tego, co zauważono. Ta najmniej interesująca, to wystąpienie zanieczyszczenia. Dwie alternatywne są za to bardzo ekscytujące. Pierwsza z nich mówi o nieznanych właściwościach neutrin. Druga zaś – i to byłaby największa sensacja – dopuszcza, że po raz pierwszy w historii zdobyto dowód na istnienie aksjonu, hipotetycznej cząstki spoza Modelu Standardowego.
Jesteśmy bardzo podekscytowani tym sygnałem, ale musimy uzbroić się w cierpliwość, powiedział Luca Grandi z University of Chicago, jeden z liderów eksperymentu XENON1T. Jak wyjaśnia uczony, najpierw trzeba sprawdzić, czy nie doszło do zanieczyszczeniem atomami trytu. Wykaże to następca eksperymentu XENON1T – XENONnT – który rozpocznie pracę jeszcze w bieżącym roku.
Wielu specjalistów zauważa, że zwykle prawdziwe okazuje się to wyjaśnienie, na które najmniej czekamy. Jednak nie zawsze tak jest i jeśli istnieje chociaż cień szansy, że XENON1T zarejestrował coś więcej niż zanieczyszczenie trytem, warto to sprawdzić.
Jeśli okaże się, że to nowa cząstka, będziemy mieli przełom, na który czekamy od 40 lat, stwierdza Adam Falkowski z Uniwersytetu Paris-Saclay. Takiego odkrycia nie da się przecenić, dodaje. Z kolei Kathryn Zurek, fizyczka-teoretyczka z California Institute of Technology mówi, że jeśli sygnały pochodzą z aksjonów, które są głównymi kandydatami na cząstki tworzące ciemną materię, lub z niestandardowych neutrin to będzie to niezwykle ekscytujące. Uczona pozostaje jednak ostrożna i dodaje, że jej zdaniem najbardziej prawdopodobne jest jednak zanieczyszczenie trytem.
XENON1T to wspólny projekt, przy którym pracuje 160 naukowców z Europy, USA i Bliskiego Wschodu. Laboratorium Narodowe Gran Sasso, którego właścicielem jest włoski Narodowy Instytut Fizyki Jądrowej, znajduje się na głębokości 1400 metrów pod masywem Gran Sasso. To wykrywacz ciemnej materii, a jego umiejscowienie głęboko pod ziemią ma chronić przed promieniowaniem kosmicznym generującym fałszywe sygnały. Zgodnie z teoretycznymi założeniami, cząstki ciemnej materii mają zderzać się z atomami w detektorze, a sygnały ze zderzeń będą rejestrowane.
Centralna część XENON1T to cylindryczny zbiornik o długości 1 metra wypełniony 3200 kilogramami płynnego ksenonu o temperaturze -95 stopni Celsjusza. Gdy ciemna materia zderzy się z atomem ksenonu, energia trafia do jądra, które pobudza jądra innych atomów. Wskutek tego pobudzenia pojawia się słaba emisja w zakresie ultrafioletu, którą wykrywają czujniki na górze i na dole cylindra. Te same czujniki są też zdolne do zarejestrowania ładunku elektrycznego pojawiającego się wskutek zderzenia. W ubiegłym roku informowaliśmy, że XENON1T zarejestrował najrzadsze wydarzenie we wszechświecie, rozpad ksenonu-124.
Obecnie XENON1T jest wyłączony, gdyż trwa jego rozbudowa do XENONnT. Nowy detektor będzie zawierał 3-krotnie więcej ksenonu i będzie lepiej zabezpieczony przed szumem tła. Dzięki temu jego czułość będzie o cały rząd wielkości lepsza.
Eksperymenty z serii XENON to pomysł fizyczki Eleny Aprile z Columbia University. Ona opracowała metody detekcji i od początku stoi na czele eksperymentów. XENON zostały zaprojektowane do poszukiwania hipotetycznych cząstek ciemnej materii o nazwie WIMP (weakly interacting massive particles). Przez 14 lat niczego nie znaleziono. Brak sukcesów odnotowały też konkurencyjne projekty naukowe.
Wiele lat temu naukowcy pracujący przy XENON zdali sobie sprawę, że mogą wykorzystać swój eksperyment do poszukiwań cząstek inną metodą. Zamiast rejestrować cząstki, które zderzą się z jądrem ksenonu, można spróbować wychwycić takie, które zderzają się z elektronem. Zwykle tego typu zderzenia traktowane są jako szum tła i odfiltrowywane, gdyż wiele z takich sygnałów pochodzi z prozaicznych źródeł, jak ołów czy krypton. Jednak z czasem uczeni coraz bardziej udoskonalali swoje urządzenia, eliminowali coraz więcej źródeł potencjalnych zakłóceń i w końcu eksperymenty XENON stały się tak czułe i dobrze izolowane od zakłóceń, że stwierdzono, iż szum tła również może przynieść interesujące informacje.
I właśnie na nim się teraz skupiono. Naukowcy przeanalizowali szum tła z pierwszego roku eksperymentu XENON1T. Spodziewali się, że w danych znajdą 232 sygnały zderzeń z elektronami, pochodzące ze znanych źródeł zanieczyszczeń. Tymczasem okazało się, że sygnałów takich jest 285. To spory naddatek świadczący o istnieniu nieznanego źródła sygnału.
Naukowcy przez rok trzymali swoje spostrzeżenie w tajemnicy. Przez ten czas próbowali zrozumieć sygnały i odnaleźć ich źródło. W końcu, po wyeliminowaniu wszystkich możliwych źródeł sygnału pozostały wspomniane na wstępie trzy wyjaśnienia, które pasują do nadmiarowych danych.
Pierwsze z nich, i najbardziej interesujące, to zarejestrowanie „słonecznych aksjonów”, hipotetycznych cząstek ciemnej materii powstających wewnątrz Słońca. To cząstki spoza Modelu Standardowego. Ich odkrycie byłoby dowodem, że aksjony istnieją, można więc znaleźć i te, które tworzą ciemną materię, jaka powstała po Wielkim Wybuchu.
Druga hipoteza mówi, że zarejestrowane sygnały mogą świadczyć o tym, iż neutrino mają silny moment magnetyczny. Właściwość ta pozwalałaby im zwiększać rozpraszanie elektronów, co tłumaczyłoby nadmiarowy sygnał. Neutrino z momentem magnetycznym również nie mieści się w Modelu Standardowym.
W końcu trzecia z możliwości, to zanieczyszczenie zbiornika z ksenonem śladową ilością trytu.
Zdaniem naukowców niezaangażowanych w XENON1T, najbardziej prawdopodobna jest ostatnia odpowiedź. Jeśli bowiem Słońce tworzy aksjony, to powstają one również w innych gwiazdach. Aksjony unoszą zaś ze sobą energię od gwiazdy. W najgorętszych gwiazdach, jak czerwone olbrzymy czy białe karły, produkcja aksjonów powinna być największa, a ilość unoszonej przez nie energii powinna być wystarczająca, by ochłodzić gwiazdy. Biały karzeł wytwarzałby tyle aksjonów, że nie obserwowalibyśmy tak wielu gwiazd tego typu, co obecnie, mówi Zurek. Podobnie wygląda problem z neutrino z dużym momentem magnetycznym. Również ono powinno ochłodzić gwiazdy, więc tych gorących nie powinno być tyle, ile jest.
Na odpowiedź nie powinniśmy długo czekać. Eksperyment XENONnT ruszy w najbliższych miesiącach. Jeśli i tam zaobserwujemy nadmiar sygnałów na podobnym poziomie, powinniśmy w ciągu kilku miesięcy być w stanie stwierdzić, która z hipotez jest prawdziwa, mówi Grandi.
Komentarze (7)
idearmo, 18 czerwca 2020, 08:14
Z podważaniem modelu standardowego jest jak z rewolucją w przemyśle baterii: słyszymy i czytamy o tym często ale nie widać skutków. W bateriach jest łatwiej bo te wszystkie "rewolucje" składają się na jakiś tam powolny postęp, który zwykły użytkownik czasami dostrzeże (bo nowy smartfon ma troszkę więcej), ale złamanie modelu standardowego jest raczej zero-jedynkowe: albo w końcu się uda, albo nie. Pozytywny efekt jest mniej spektakularny: to postęp naukowy - dużo mniej rewolucyjny i słabiej sprzedający się w mediach.
pinopa, 18 czerwca 2020, 10:08
Aby pomóc Kathryn Zurek i Elena Aprile przesłałem im angielską wersję art. "Faraday disc and ether" z listem przewodnim:
Dear Professor .........,
I am sending a short article "Faraday disc and ether". Please read its content, because it can help you with your scientific work.
Yours sincerely
Bogdan Shenkaryk "Pinopa"
PS
If you would like to read my other articles, only a small part of them is in English. These articles can be found at http://pinopa.narod.ru/Polska.html.
(The links are located in the lower left corner of the computer screen.)
BS
A może znacie kogoś, kto byłby zainteresowany rozwiązaniem problemów, z jakimi zmaga się dzisiejsza nauka o przyrodzie?
Dysk_Faradaya_i_eter_uk.pdf Dysk_Faradaya_i_eter.pdf
Sławko, 18 czerwca 2020, 19:09
Z całym szacunkiem, ale chciałem zapytać, czy spam, który serwuje pan pinopa można jakoś odfiltrować?
gooostaw, 18 czerwca 2020, 19:23
Nie będziesz tak mówił, jak za 10 lat będą uczyli o tym w szkołach.
Wcale nie będą
Sławko, 18 czerwca 2020, 19:43
Rozumiem, że zażartowałeś, ale jak będą tego uczyli, to odszczekam to wszytko na czworaka.
A tak na poważnie, to to, czego obecnie uczą w szkołach, także czasami woła o litość
Chociaż pamiętam, że w moich czasach szkoły podstawowej miałem nauczycielkę fizyki, która już wtedy załamywała mnie poziomem swojej wiedzy. Znała oczywiście wszystkie wzory, ale jej tłumaczenie niektórych zjawisk fizycznych wskazywało, że nie rozumiała o czym, tak naprawdę mówiła.
Sławko, 18 czerwca 2020, 20:02
Zdecydowanie przyznaję Ci rację.
peceed, 18 czerwca 2020, 21:58
Potwierdza to moją obserwację że wszystkich sensownych ludzi wsysa branża IT.
Jeśli ktoś jest w stanie studiować matematykę, to poradzi sobie jako programista i zarobi minimum 5x więcej.