Poznaliśmy rozwiązanie równania x3+y3+z3=k dla ostatniej liczby z zakresu od 1 do 100

| Ciekawostki
geralt

Gdy przed 5 miesiącami profesor Andrew Booker z University of Bristol nieco przy okazji rozwiązał równanie diofantyczne x3+y3+z3=33, postanowił pójść za ciosem i znaleźć rozwiązanie dla ostatniej nierozwiązanej liczby z zakresu 1–100. Równania diofantyczne zostały nazwane od Diofantosa z Aleksandrii, który przed 1800 laty zaproponował podobne równanie.

W 1954 roku naukowcy z University of Cambridge rozpoczęli poszukiwania rozwiązania dla równań x3+y3+z3=k, dla k z zakresu od 1 do 100.

Matematycy, którzy próbują je rozwiązać wiedzą, że liczby, z których po podzieleniu przez 9 zostaje reszta 4 lub 5 nie mogą być rozwiązane z pomocą równań diofantycznych. To oznacza, że z zakresu 1–100 nie można rozwiązać 22 liczb, ale dla 78 powinno istnieć rozwiązanie. Jeszcze do niedawna nie znano rozwiązania dla liczb 33 i 42. W kwietniu profesor Booker znalazł rozwiązanie dla 33 oraz stwierdził, że rozwiązania dla 42 należy szukać wśród liczb większych niż 1016.

Uczony postanowił pójść za ciosem i poprosił o pomoc profesora matematyki Andrew Sutherlanda z MIT, który specjalizuje się w masywnych obliczeniach równoległych. Obaj uczeni wykorzystali urządzenie, które przypomina usługi planetarnego przetwarzania danych „Deep Thought” opisane w „Autostopem przez galaktykę”, którzy dał odpowiedź na wielkie pytanie o życie, wszechświat i całą resztę. Do znalezienia odpowiedzi na równanie x3+y3+z3=42 wykorzystano bowiem Charity Engine, czyli sieć ponad 500 000 domowych pecetów, których użytkownicy udostępniają ich moc obliczeniową w czasie, gdy maszyny nie są używane. Rozwiązanie, które wymagało ponad miliona godzin obliczeń wygląda następująco (-80538738812075974)3+(80435758145817515)3+(12602123297335631)3=42. Tym samym znamy już wszystkie możliwe rozwiązania równań diofantycznych dla liczb z zakresu 1–100.

Profesor Booker stwierdził, że czuje ulgę. W tej grze nie można być pewnym, że znajdzie się odpowiedź. [...] Mogliśmy znaleźć odpowiedź po kilku miesiącach, ale mogło się też okazać, że przez kolejne 100 lat nikt jej nie znajdzie.

równanie diofantyczne matematyka równanie Andrew Booker