Powstały kwantowe wzmacniacze sygnału – ważny krok ku kwantowemu internetowi
Dwa niezależne zespoły badawcze stworzyły kwantowe wzmacniacze zdolne do przechowywania multipleksowanych sygnałów, przekazywania splątanych cząstek i pracy na częstotliwościach używanych w telekomunikacji. To bardzo ważny krok w rozwoju skalowalnego kwantowego internetu.
Kwantowa sieć komputerowa nie tylko byłaby siecią znacznie bardziej bezpieczną, ale również pozwalałaby np. na dystrybucję zadań obliczeniowych pomiędzy komputerami kwantowymi, co z kolei umożliwiłoby na rozwiązywanie niezwykle złożonych problemów.
Zasadniczym elementem kwantowego internetu będą kwantowo splatane połączenia pomiędzy węzłami takiej sieci. Problem jednak w tym, że tworzenie stanu splątanego przy dużym transferze danych na duże odległości jest bardzo trudne. Wynika to z faktu, że kwantowa informacja ulega degradacji podczas przesyłania, a zasady mechaniki kwantowej nie pozwalają na użycie standardowych wzmacniaczy. Potrzebne są więc wzmacniacze kwantowe, wzmacniające informację i podlegające zasadom fizyki kwantowej.
Dwie niezależne grupy badawcze, jedna z hiszpańskiego Instytutu Nauk Fotonicznych (ICFO – Institut de Ciències Fotòniques), druga zaś z Uniwersytetu Nauki i Technologii Chin (USTC), pokazały, jak kwantowe układy pamięci mogą posłużyć do budowy praktycznych kwantowych wzmacniaczy.
Oba zespoły użyły źródeł par fotonów, gdzie jeden z fotonów jest składowany w kwantowej pamięci, a drugi jest wysyłany jako sygnał rozgłaszający i potwierdzający splątanie. Multipleksing, rozumiany tutaj jako możliwość jednoczesnego składowania wielu sygnałów w postaci fotonów o różnych długościach fali jest realizowany za pomocą protokołu kwantowego optycznego grzebienia częstości. Dzięki temu taki system nie musi czekać na udane zakończenie rozgłaszania przed wygenerowaniem kolejnej pary fotonów. Co bardzo ważne, całość pracuje na częstotliwościach używanych obecnie w systemach telekomunikacyjnych, jest więc kompatybilna z już istniejącymi sieciami.
Hiszpanie stworzyli system, który wykorzystuje pamięć kwantową przechowującą fotony w milionach atomów przypadkowo rozrzuconych w krysztale wzbogaconym metalem ziem rzadkich. Użyli przy tym różnych długości fali, 606 nm dla przechowywania i 1436 nm (częstotliwość telekomunikacyjna) dla rozgłaszania splątania. Ich system może przechowywać sygnały przez 25 mikrosekund zanim je uwolni. Splątanie uzyskiwane jest pomiędzy dwoma układami przechowującymi foton w superpozycji. Układy znajdują się w odległości 10 metrów od siebie.
Z kolei Chińczycy wykorzystali kwantowe układy pamięci bazujące na kryształach wzbogaconych jonami metali ziem rzadkich. Zbudowali dwa węzły i stację pośrednią pomiędzy nimi. W każdym z węzłów przechowywany jest jeden z pary splątanych fotonów. Jeden z fotonów z pary uwalniany jest po 56 nanosekundach w celu analizy, a drugi przechodzi do stacji pośredniej. Dokonywany jest wspólny dla nich pomiar stanu Bella. Węzły dzieli odległość 3,5 metra.
Musimy jeszcze pokonać sporo przeszkód technologicznych, mówi lider hiszpańskiej grup badawczej, Hugues de Riedmatten. Chcemy uzyskać lepszą stabilizację częstotliwości czy lepszą kontrolę nad liczoną w setkach nanometrów długością łączy optycznych. Pracujemy nad poprawieniem wydajności źródła,z wydłużeniem czasu przechowywania informacji w kwantowej pamięci i systemami odczytu danych. Zmierzamy w kierunku budowy wielowęzłowej sieci i zwiększenia odległości pomiędzy kwantowymi wzmacniaczami.
Z kolei Zhou Zongquan z USTC powiedział: przeprowadziliśmy kompletną demonstrację podstawowego połączenia w kwantowym wzmacniaczu. Chińczycy zapowiadają ulepszenia źródła światła w celu zwiększenia tempa uzyskiwania splątania. Dodają, że zanim ich system znajdzie praktyczne zastosowanie, konieczne będzie znaczące poprawienie parametrów kwantowej pamięci.
Ronald Hanson z Uniwersytetu Technologicznego w Delft chwali prace obu zespołów. Mówi, że to ważny krok w kierunku budowy praktycznych wzmacniaczy kwantowych, a niezwykle ważny jest fakt, że urządzenia pracują z częstotliwościami współczesnych sieci telekomunikacyjnych.
Pod wrażeniem jest też Rodney Van Meter z japońskiego Keio Univeristy. Oba zespoły osiągnęły coś znaczącego: stworzyły dwie pary splątanych fotonów, przechowały po dwa fotony w różnych układach pamięci oddalonych od siebie na pewną odległość, a dwa kolejne wysłały w tym czasie, by przeprowadzić pomiar.
Komentarze (3)
Ergo Sum, 11 czerwca 2021, 20:12
Chyba nie wytrzymam czytać kolejnych 100 artykułów o "dokonaniu ważnego kroku na drodze ku komputerom kwantowym". Il jeszcze tych kraków - czy kiedykolwiek to się skończy i zacznie praktyczne wykorzystywanie poruszające do przodu naszą wiedzę?
nantaniel, 11 czerwca 2021, 23:49
Najlepsze jest bajdurzenie o "kwantowym internecie" :E
Sławko, 12 czerwca 2021, 10:13
Brak ci cierpliwości. Naukowcy rzeczy "magiczne" stosują w praktyce niemal od razu, a na rzeczy "niemożliwe" trzeba trochę poczekać.
Przesyłanie informacji od sygnałów dymnych do wynalezienia telegrafu wymagało tysięcy lat. Od wynalezienia telegrafu do telefonu komórkowego minęło już tylko 119 lat, a od telefonu komórkowego do smartfona już jedynie 36 lat. Po kolejnych 15 latach można już było prowadzić smartfonami wideo rozmowy. A czy dożyjesz procesora kwantowego w swoim smartfonie, to tego nie wiem.