Wylądowali! Perseverance i Ingenuity na Marsie

| Astronomia/fizyka
NASA

Przed kilkoma minutami nadeszło potwierdzenie, że łazik Perseverance i śmigłowiec Ingenuity bezpiecznie wylądowały na powierzchni Marsa. Po ponad 200 dniach podróży i przebyciu 470 milionów kilometrów NASA udało się posadowić na Czerwonej Planecie najcięższy obiekt, jaki kiedykolwiek ludzkość tam umieściła. Po emocjach lądowania rozpoczyna się zasadnicza część misji Mars 2020 – badania w poszukiwaniu dawnego życia na Marsie.

Wyprawy na Marsa są niezwykle trudne. Do wczoraj ludzkość miała na swoim koncie 47 misji, z czego całkowicie lub częściowo udanych było 24, w tym 16 zorganizowanych przez USA, 3 przez ZSRR, 1 wspólna UE/Rosja oraz po 1 przez UE, Indie, Zjednoczone Emiraty Arabskie i Chiny.

Misja Mars 2020, w ramach której lądował Perseverance, jest zatem 48. misją w ogóle, 25. udaną, w tym 17. udaną misją USA.

Jak dotychczas jedyną agencją, która potrafi przeprowadzić pełną misję wraz z miękkim lądowaniem na Marsie jest NASA. Co prawda w 1971 roku na Czerwonej Planecie miękko lądował radziecki Mars 3, jednak kontakt z nim utracono już 104,5 sekundy później. Najprawdopodobniej udało się też wylądować Beagle'owi 2 wysłanemu przez Europejską Agencję Kosmiczną w 2003 roku, jednak nigdy nie nawiązano z nim kontaktu. Razem z dzisiejszym lądowaniem Amerykanie próbowali lądować na Marsie 10-krotnie, z czego 9 razy im się udało.

Perseverance

Łazik Perseverance – który bardziej szczegółowo opisaliśmy tutaj – z wyglądu przypomina swojego poprzednika, Curiosity, który bada Marsa od 2012 roku. Jednak został wyposażony w wiele nowatorskich technologii, w tym w nowy system napędowy, dzięki któremu będzie najszybszym łazikiem kiedykolwiek wysłanym na Marsa.

Powodem, dla którego przykładaliśmy taką wagę do prędkości jest fakt, że jeśli jedziemy, to nie wykonujemy badań naukowych. Jeśli wybierasz się do Disneylandu, to chcesz dojechać do Disneylandu. Nie chodzi o to, by jechać, a by znaleźć się na miejscu, mówi Rich Rieber, którego zespół przez pięć lat pracował nad napędem łazika.

Perseverance otrzymał nowy układ napędowy, zawieszenie, koła, system rozpoznawania otoczenia czy algorytmy planowania trasy. Wszystko po to, by łazik mógł nawigować po trudnym terenie Krateru Jezero.

Perseverance ma przemieszczać się trzykrotnie szybciej, niż jakikolwiek inny łazik marsjański, dodaje Matt Wallace, zastępca dyrektora misji. Daliśmy mu sporo autonomii, sztucznej inteligencji, by mógł wykonywać swoją misję.
Prędkość łazika nie będzie imponująca. Wyniesie maksymalnie 4,4 cm/s (158,4 m/h). Będzie najszybszy nie dlatego, że będzie jechał szybciej ale dlatego, że mniej czasu będziemy spędzali na planowaniu trasy, wyjaśnia Rieber.

Perseverance ma wgraną mapę, stworzą na podstawie zdjęć z satelity Mars Reconnaissance Orbiter. Pokazuje ona obiekty mniejsze niż 30 centymetrów. Mapa ta pozwoli łazikowi zorientować się, w którym miejscu się znajduje. Wyposażony jest też w dwie kamery nawigacyjne (Navcams) umieszczone na maszcie, które przekazują mu obraz stereo, oraz sześć pokładowych kamer służących wykrywaniu przeszkód. Navcams zapewniają 90-stopniowy kąt widzenia i z odległości 25 metrów potrafią wykryć obiekty rozmiarów piłeczki golfowej.

Kamery, w połączeniu z algorytmami sztucznej inteligencji mają umożliwić łazikowi nawigację w czasie rzeczywistym. Będzie on w stanie zauważyć przeszkody i większość z nich ominąć bez pomocy z Ziemi. Każdego marsjańskiego ranka centrum sterowania wyśle łazikowi marszrutę na dany dzień i poczeka, aż Perseverance zamelduje, że dotarł do wyznaczonego punktu. To znakomicie usprawni poruszanie się. Wcześniejsze łaziki najpierw wykonywały zdjęcia otoczenia, wysyłały je na Ziemię i czekały do następnego dnia na instrukcje. Dlatego też np. Curiosity w dni, w których miał się przemieszczać, spędzał na podróży jedynie 13% czasu. Perseverance co najmniej potroić ten wynik.

Oczywiście to wszystko brzmi prosto, ale proste nie jest. Inżynierowie na Ziemi są w stanie obliczyć, jak daleko Perseverance się przemieścił zbierając dane o obrotach każdego z jego sześciu kół. Co jednak w przypadku, gdy któreś koło będzie miało poślizg bo znajdzie się na piasku? Jak wówczas określić, jak daleko od wyznaczonej trasy znalazł się łazik? Może to obliczyć komputer pokładowy łazika, jednak jego moc obliczeniowa nie jest imponująca. Nasz komputer ma mniej więcej wydajność bardzo dobrego komputera z roku około 1994, mówi Rieber. Problemem jest tutaj promieniowanie kosmiczne. Im bardziej nowoczesny procesor tym mniejsze i gęściej upakowane tranzystory, przez co są one bardziej podatne na zakłócenia powodowane promieniowaniem.

Głównym zadaniem Perseverance jest znalezienie śladów życia. Żeby jednak na nie trafić, łazik musi się przemieszczać, by badać kolejne miejsca. Im bardziej efektywnie będzie to robił, tym większa szansa, że dokona odkrycia.

Na miejsce lądowania wybrano Krater Jezero. Naukowcy sądzą, że w przeszłości płynęła tam rzeka, która wpadała do jeziora. Jeśli gdzieś można znaleźć ślady życia, to właśnie tam. Dlatego też wybór padł na to miejsce, mimo iż jest to najtrudniejszy z dotychczas wybranych obszarów do lądowania na Czerwonej Planecie.

Ingenuity

Pod „brzuchem” łazika umieszczono śmigłowiec Ingenuity, którego budowę szczegółowo opisywaliśmy. Został on zabrany w misję niejako przy okazji. Nie stanowi zasadniczej jej części. Śmigłowiec nie będzie prowadził żadnych badań. Wysłano go po to, by sprawdzić, czy potrafimy zbudować drona poruszającego się w atmosferze Marsa. Takie drony mogą przydać się podczas przyszłych misji załogowych i bezzałogowych np. do dokonywania szybkich zwiadów w okolicy. Zadaniem Ingenuity będzie wykonanie serii 90-sekundowych lotów. Ze względu na odległość pomiędzy Ziemią a Marsem jakakolwiek komunikacja w czasie rzeczywistym czy sterowanie będą niemożliwe.

Jeśli wszystko przebiegnie zgodnie z planem śmigłowiec odbędzie loty i wykona kilka zdjęć. I to wszystko. Jednak dostarczy bezcennych danych, dzięki którym możliwe będzie zbudowanie w przyszłości pojazdów latających wykonujących bardziej ambitne zadania w atmosferze Marsa i – być może – innych planet.

Jako, że Ingenuity to misja demonstracyjna, NASA akceptuje w tym wypadku wyższe ryzyko niepowodzenia. Zgodnie z klasyfikacją NASA misja Perseverance należy do Klasy B czyli "wysoce priorytetowych zasobów narodowych, których utrata będzie miała duży wpływ na [...] osiągnięcie celów naukowych". W takich misjach wymaga się minimalizacji ryzyka z minimalnymi kompromisami. Dlatego przy ich przygotowaniu przez wiele lat pracują olbrzymie rzesze ludzi, którzy m.in. przygotowują odpowiedni sprzęt.

Przed Ingenuity nie stawia się takich wymagań, dlatego też wiele elementów śmigłowca zostało wykonanych z powszechnie dostępnych materiałów. Na przykład zastosowano w nim standardowy procesor Snapdragon 801. Dlatego też, ironią losu, śmigłowiec, który ma po po prostu latać, dysponuje mocą obliczeniową o całe rzędy wielkości większą niż łazik, wykonujący złożone badania naukowe. Jako, że moc procesora znakomicie przewyższa moc potrzebną do samego sterowania, Ingenuity wyposażono też w kamerę rejestrującą obraz z prędkością 30 klatek na sekundę oraz oprogramowanie nawigacyjne, które na bieżąco obraz analizuje. Twórcy śmigłowca mówią, że część elementów – jak np. laserowy miernik wysokości – zakupili w firmie SparkFun Electronics, produkującą elektronikę do zabawek. Stwierdziliśmy, że co prawda to sprzęt komercyjny, ale go przetestujemy. Jeśli będzie działał, będziemy go używali, mówi Tim Canham z Jet Propulsion Laboratory.

Ingenuity będzie działał w trybie półautonomicznym. Z Ziemi będzie otrzymywał szczegółowy plan lotu, a zadaniem śmigłowca będzie go wykonać, utrzymując się na ścieżce. Twórcy śmigłowca nie mieli czasu na opracowanie dla niego prawdziwej autonomii. Ale nie wykluczają, że w przyszłości tego typu dronom będzie można wydać polecenie, by np. podleciały do konkretnej skały i wykonały jej zdjęcia, a one to zrobią, bez otrzymanego wcześniej z Ziemi szczegółowego planu. Istnieją już plany koncepcyjne przyszłych misji, w ramach których pracujemy nad większymi śmigłowcami, zdolnymi do wykonania takich zadań. Ale jeśli przypomnimy sobie pierwszy marsjański łazik, Pathfindera, to miał on bardzo proste zadaniem. Miał jeździć w kółko wokół stacji bazowej, wykonywać zdjęcia i pobierać próbki skał. Skromnie planujemy misje demonstracyjne. I tak też postępujemy z pierwszym śmigłowcem na Marsie, dodaje Canham.

Obecnie na Marsie i w jego okolicach pracuje zatem 11 misji. Oprócz Mars 2020 (Perseverance, są to orbitery Mars Odyssey (NASA), Mars Express (ESA), Mars Reconnaissance Orbiter (NASA), Mars Orbiter Mision (ISRO – Indie), MAVEN (NASA), HOPE (Zjednoczone Emiraty Arabskie), Tianwen-1 (Chiny) oraz łazik Curiosity (NASA) i lądownik InSight (NASA).

Mars 2020 NASA Perseverance Ingenuity lądowanie na Marsie